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Abstract--The translational and rotational motions of two prolate spheroids sedimenting in a viscous 
fluid have been determined by the method of reflections. No restrictions are imposed on the spheroid 
orientations or relative sizes. As is the case in many mobility problems, the method converged rapidly 
for all but almost touching configurations. The results extend earlier work on special eases such as 
Wakiya's work on horizontal orientations and agree with Gluckman et aL and Liao and Krueger's 
boundary collocation solution of axisymmetric probl©ms. Analysis of sedimentation with inclined 
axes and mirror symmetric geometry reveal both periodic and single-encounter particle trajectories. 
The calculation of the separatrix between the two behaviors required the use of the higher reflections 
introduced in this work. 

1. I N T R O D U C T I O N  

Suspensions of prelate spheroids have played an important role in the theoretical develop- 
ment of suspension rheology. Such suspensions exhibit non-Newtonian behavior through the 
interaction between the flow field and Brownian motion (Giesekus 1962, Brenner 1972, 
Hinch & Leal 1972). However, rigorous derivation of the material functions to date have 
been restricted to the dilute limit, partly because of the lack of information on multiparticle 
hydrodynamic interactions. Existing information on particle-particle interactions is limited 
to certain geometries at large particle-particle separations (Wakiya 1965) or special 
configurations (Gluckman et al. 1971; Liao & Krueger 1980). 

New results are presented here which describe the interactions between two spheroids 
with arbitrary configurations and all but almost-touching separations. Explicit examples are 
worked out to illustrate phenomena, such as the evolution of particle geometry, which are not 
found in the corresponding problem for spheres. The computational technique which is based 
on the method of reflections (Happel & Brenner 1965, Felderhof 1977) was found to 
converge rapidly for the sedimentation and related mobility problems. The improved results 
for the mobility functions were essential in accurate calculation of particle trajectories, 
especially in the near-field interactions. 

In section 2, the techniques for calculating hydrodynamic interactions which were 
developed in an earlier note (Kim 1985) are used to recover Wakiya's 0965) results for the 
resistance problem. In section 3, sedimentation and angular velocities are calculated to 
O(R -~) and O(R-S), respectively, where R is the center to center separation between the 
spheroids. An advantage of the present method is that it bypasses the usual procedure of 
calculation and inversion of the resistance problem. As outlined in Kim (1983), the 
sedimentation problem is solved directly, without solving a collection of subsidiary problems 
on translating and rotating spheroids. Problems solved include sedimentation along and 
perpendicular to the line of centers and the evolution of configurations for spheroids with 
inclined axes. 

2. H Y D R O D Y N A M I C  I N T E R A C T I O N  BETWEEN TWO S T A T I O N A R Y  SPHEROIDS 

In this section, the method will be used to recover Wakiya's 0965) calculations for the 
drag on a spheroid. Figure 1 shows the geometry used by Wakiya 0965).  In order to simplify 
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Figure  1. W a k i y a ' s  geometry  for two horizontal ly  oriented spheroids.  

the final expressions, he restricted his analysis to two identical spheroids with both axes 
placed horizontally (with gravity acting in the negative z direction). The drag and torque on 
spheroid 1 was calculated for the case where both spheroids were translating (without 
rotating) in the negative x direction in a quiescent fluid. 

In the terminology of the general literature, this is called a resistance problem. The 
translational and rotational velocities are specified and the drag and torques are to be found. 
The mobility problems pose the inverse question, i.e. forces and torques on the particle are 
specified and the translational and rotational motions are to be determined. The latter 
problem occurs more frequently in the modeling efforts of diverse fields. Sedimentation and 
diffusion problems in suspension rheology and hydrodynamic interactions in the Rouse & 
Zimm theory all require the solution of a mobility problem. Specific applications can be 
found in the following samples from an extensive list: Glendinning & Russel ( 1 9 8 2 ) ,  

Batchelor (1976), and Bird, et al. (1977). 
The sedimentation problem (a mobility problem) and the problem of calculating the drag 

on stationary objects (a resistance problem) are reciprocals of each other up to O(R-3) .  This 
simple situation does not hold at higher orders because torques are present in the resistance 
but absent in the sedimentation problem. Torques, if present, contribute terms of O(R  -4) in 
the drag. Therefore, Wakiya's (1965) analysis of the drag to O(R  -2) also gives the 
sedimentation velocity to at least that order. 

Wakiya's problem is equivalent to that of two stationary spheroids in a uniform stream 
with the stream flowing in the positive x direction (figure 1). We start by deriving the 
method of reflections solution to Wakiya's resistance problem, but without any simplifica- 
tions regarding relative sizes, or spheroid orientations in the uniform stream U ®. As in 
Wakiya's work, the analysis in this section will be carried out to two reflections so that the 
drag will be accurate to O(R-2). The orientation vector, position along the axis, eccentricity 
and the distance from the centroid to the loci of each spheroid will be denoted by do, e~ and 
c,, a - 1,2. 

In an earlier note (Kim 1985) it was shown that the Chwang & Wu (1974, 1975) 
representation for the reflection from the uniform stream and the contribution from this 
(zeroth) reflection to the drag on spheroid 1 are 

v j ( x )  - U ® - U ® • {"ldldi  + "2(~ - d ld l )}  

{ ( l - e 2 )  } "(4e~ [2.1] • j~_~' 1 + ( c ~ -  ~ )  V 2 l ( x  - ~ l ) d ~ l ,  

F~ °)= 16~r#c~{,x~d~d~ + o~2(/~ - d i d l ) }  • U ®. [2.2] 

The Chwang-Wu constants a and ~ depend only on the spheroid eccentricities and are given 
in table 1 and I is the Oseen tensor. The analogous reflection field v~ from spheroid 2 can be 
obtained from [2.1] by permuting the particle indices. As shown in the references on the 
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Table 1. Constants for the velocity representation for the spheroid Constants derived from Chwang & Wu 
(1974, 1975) 
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method of reflections, this implies that the contribution from the first reflection is 

F~ I ) -  8~rplaldldl + cq(a - did,)] 
(1 - e~) / 

• f "  I, + - 
~ - ¢ 1  l 

d~l ['c, d~2 
- -16~'pcn[oqdndi + cq(8 - did,)} • ~-ci' "~cl__ J-c, ~ [2.3] 

• 1 + ( 4 - ~ )  "(Yell) + ( 4 - ~ I )  ( 4 4 )  ] l 

,(~, - ~ ) / ( s ~ - ~ , )  • r ~  °~. 

It is apparent that the dependence on the orientation and shape of spheroids 1 and 2 comes 
solely from the tensor 

8 Te2 - "~ e{atd,dl + a2(a - dldl)} 

~ f_~, 1 + ( 4 -  1~) ~,~,12- ~ [2.4] 

+(~-~,~) ~ )  v2] ,(~, - ~2)/(s.~,). 
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For the spherical case, this tensor is known to polymer kineticists as the Rotne-Prager- 
Yamakawa tensor (Rotne & Prager 1969, Yamakawa 1970). It is interesting to note that 
Rotne & Prager obtained their tensor using a variational approach. 

The leading order term in the contribution from the second reflection, 

F~ ~ -  ( -6r tm,T~2)-  (-6rr~a2T~,)- F[ °~, 

comes from the monopole approximation 

8 
TP2 ~ "~ eloqdtdt + a2(~ - d,d,)} • I(x, - x2)/(81r/+). [2.51 

The drag on spheroid 1 is the sum of these contributions and Wakiya's (1965) solution is 
recovered after the appropriate simplifications in the geometry and notational changes. The 
contribution from the first reflection to O(R -2) is simply a monopole-monopole interac- 
tion: 

- 2 c , { a l d l d ,  + a2(6 - d~d,)}. I(xl - x2) • F~ °). [2.6] 

To convert this into Wakiya's expression, we need 

F(2 ° ) -  167r~tc2{atd2d2 + a2(a -- d2d2)} • U ®, [2.6a] 

U ® • (x2 - xl) - U®R sin ~b, [2.6b] 

dt • U ® ~ d 2  • U ® - -  0 ,  [2.6c] 

and c, - c2 - c, e, - e2 - e. Equation [2.6] can then be simplified to 

- 3 2 1 r l t ( c a 2 ) 2 U ® / R  - 32r#COt2 U® sin ~/R{coqdtdl + ca2(8 - did0} • (x2 - X l ) / R .  [2.7] 

Therefore, the components of the drag in the direction of the uniform stream, spheroid axis 
and the third orthogonal axis (or x~, y~, z~ in Wakiya's right handed coordinate system 
centered at xt) are 

and 

- 32a -# (co t2 )2U~*( 1  + s in  2 ~k)/R, 

-327ra(cal) (col2)U ® cos ¢l sin ~k cos ~k/R, 

[ 2 . 8 a ]  

[2.8b] 

321r#(ca2)2U ® sin Ot sin2 ~ cos ~/R.  [2.8c] 

Since ca, and ca, equal Wakiya's R2 and R~, respectively, we recover his O(R -t) term. 
The O(R- ' )  terms come from the monopole-monopole interactions in the second 

reflection or 

4 c 2 { a , d , d t  + a2 (5  - d ,d~)}  • I (x ,  - x2)  • {atd2d2 + a 2 ( ~  - d2d2)} • I (x t  - x2)  • F]  °). 

Some heavy algebra can be bypassed by noting that the leftmost tensor is the one that 
determines the direction of the drag. The product of the four factors to its right simplifies 



SEDIMENTATION OF SPHEROIDS IN A FLUID 703 

to 

16Tl~Cla2/R 2 U ® - 161rp.cla22U ® sin ~//R2{a2(2 + sin 2 ~) + (a2 sin 2 02 

+ ~l cos 2 ~2) cos2 ~}(x~ - x2)/R + 16~r/zctct~(a~ - a2)U ® sin ~ cos ~ c o s  ~)2/R 2 d 2 

and the Xl, Yl, z~ components reduce to the corresponding terms in Wakiya's [3.8]. 
The original expressions for the torque can also be recovered via the following 

contributions from the first and second reflections: 

T~ l) - 41r~t{'ydid, + 3"(5 - d td , ) }  • ~-#i' ( 4  - ~j~)V x v2(~i)d/~i 

(1 - e~) 
+ 81r~a'd, x f-.i' (~  - ~j~){l + (~  - ~ )  (Se~ V2} d , -  e2(~,)d~,. 

T~ ') - 47ru{~d,di + ~"(~ - d,dl)) • f_#' (~  - ~j))V x v,2(~m)d~l 
¢t 

(1 - e~) 

In the next section, the analogous expressions for the sedimentation (mobility) problem 
are calculated to higher order. From here on, we will not use the angles ~), ~2 and ~. Instead, 
the geometrical dependence will be represented by dot products between x~ - x2, d~ and d2. 

3. SEDIMENTATION OF TWO SPHEROIDS 

3.1. General procedure 
The procedure for calculating the sedimentation velocities is a straightforward general- 

ization of that employed for spheres. The essential modification is the distribution of the 
singularities along the axes of the spheroids. The calculations will be performed up to and 
including the second reflection so that the error in the translational and rotational velocities 
will be O ( R  -7) and O(R-8) ,  respectively. 

The translational velocity of spheroid 1 is obtained by summing the contribution from the 
reflections: 

U~ = u l  °) + U~ ~) + u ~  2) + • • • .  [3.11 

The zeroth reflection contributes 

U~ °) - F,(16~'jaCm)-' • {o~i-~d,d, + o~"(0 - dldl)}. [3 .2 ]  

The contribution from the first reflection is 

1 { (l-e~) } 
[3.3] 

with the incident field 

( I  - 4 ) _ ~ |  . .  , , ( , , ) -r , .  f"I1 v 
" - r 2  

[3.41 
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This contribution can be simplified as follows: 

with h2 - 6 - 42 and E - IS121. 
The second reflection contributes 

vi”’ _ 1 
*c I Jl (1 - 6) 

_c' 1 + cd - C)(4e:)V2 v,2(&)4*, Cl I 
with 

L3.51 

13.61 

v,2(x) - ss” : -2 42 -I, (c: - t:) - : 
1 + <C: - t:> w v2 v 1(x - [2)/(8?rp)d(2. 13.71 

2 Cl 

When we insert [3.7] into [3.6] and use the expressions for the Stokes dipole and octupole, 
[3.6] simplifies to 

X 

The stresslet is obtained via the Faxen law as (Kim 1985) 

S$ - 8~ I- ‘/2 as (d& - !h S,,>(d,,d,, - $ &,) 

- ‘/, a*(daJ,kdti + d2iJjld2, + b,ld2,d2k + &d2/d2, - 4dad2,dxd2,) 

- ‘h Q@&, + 6,& + ~,,d& + d2id2/d& 

- d&d,, - d&d,, - 4,4,da - 6,,d,,d,,)~ 13.91 

x =, <c: J - l:) -Q 1 1 - : + (6 - t:) WV2 I elk1G2)dt2 
- 2w*(dzwh, + +,udz) J” (c: - &v x Vet - 2wS”k}d&. 

-0 



SEDIMENTATION OF SPHEROIDS IN A FLUID 705 

The expression for U~ I) is exact since the exact v2 is used while U] 2) is accurate only to O(R-~) 
since only those leading terms were used in [3.7]. However, the leading error term, of 
O(R-~), comes from the third reflection which was neglected. 

The rotational velocity of spheroid 1 also follows as a sum of the contribution from each 
reflection: 

,o, - ~ ' ~  + ~2) + . . . .  [3.1o] 

The first reflection contributes 

re, 

4d3 (2 ---e~ e?) _ { + f-,i' (c~ - ~ )  1 + (c~ - ~ )  [3.11] 

(1 e 2 ) 
%75[ d, x [o~(~,) • di]d~i. 

(8d) J 

Substitutions for v,, its rate-of-strain field e~ and the expression for the rotlet eventually lead 
to 

1 3 - c, d~2 

s.. - × 

1 e~ 3 d~n d~2 
+ i81r# (2 - et 2) f-el' 4c~ f-~i' ~c2 (~ - ~) 

{[' ( 
× - / ~  + (~  - ~ )  ~ , 5  + ( ~  - ~) 

( ! :  
• (4~ )  ] / j r |  F2./~,2d, •/~,2d, x /~ , ,  

(1 - e~) 
- ( d -  ~?) -(~§ + ( : , -  ~) 

( 1 - -  ~'~)16 } • (4e~) J~d~ × (F2~12 + ~2F2)" dl • 

[3.12] 

The second reflection contributes 

~p i f  ~' - 8~ J-,,  ( ~  - / i ~ ) V  x v,~(/~,)d~, 

3 d { 
+ 4c~ (2 - e~)  f~¢i' (d  - -  ~ )  1 + (d  -- /J~) [3.13] 

O - d) } 
• "(8e~l~ V2 di x [0 ,2(~ , )  • d l ] ~ l .  

The leading order term in Vl~ is irrotational. Therefore, the O(R -s) term in the rotational 
velocity comes solely from the second term in [3.13]. It should be noted that this term is 
absent for spheres, so for spheres, co~ 2) decays more rapidly, i.e. as O(R -~) [see Jeffrey & 
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Onishi (1984)]. Finally, [3.13] can be reduced to 

I e~ f~ 3 d~l f~ 3 d~2 
8.# (2 --e~)J_~.' 4c~ J-~ (d ~)(c~ ~) 1 

x - ~ + (c, ~ - ~ )  "(~e~7 + ( d -  ~) 

(~ :e~)/60 ] 
• (8el) ] ~ T J d "  ~,2d, x [S(2 ') . /J,2] 

[ 3 ((c~ ~ )  ( 1 - e ~ )  
(c~ ~ )  

+ - ~- + - (~e~ + - 

(1 - e~) / 60] [S~,): ~,2d,]ds x ~,2 [3.14] 
• ~fe~ JR 
(1 - e~) (1 - e~)] 12 . 

- ( 4  - ~,~) (Ue~ + ( c ~ -  ~ ) ~ / ~ o ,  × [s~". d,] 

[,,( 
(1 - e~)/210 ] } 

Equations [3.2], [3.5], [3.8], [3.9], [3.12], and [3.14] allow us to calculate the 
translational and rotational velocities for any given orientations of the spheroids. Special 
orientations are examined in the following subsections. 

3.2. Sedimentation of two vertically oriented spheroids along their Hne of centers 
The simplest geometry consists of two vertically oriented spheroids falling along their 

line of centers as shown in figure 2. The orientation and separation between the spheroids 
remain invariant as can be deduced from symmetry and the linearity of the Stokes equation. 
Thus the analysis leads to a straightforward extension of Stimson & Jeffery's (1926) results 
for spheres. Therefore this problem merely serves as a benchmark test for computational 
methods. 

The sedimentation velocity, nondimensionalized by the terminal velocity for an isolated, 
vertically oriented spheroid, is plotted in figure 3 for three aspect ratios. The solid line is 
indistinguishable from the spherical (Stimson & Jeffery) solution for R/a > 2.1. As the aspect 
ratio increases, the hydrodynamic interactions become weaker. The contribution from 
reflections beyond those calculated by Wakiya become significant for R/a < 3. The results 

Figure 2. Sedimentation of two identical spheroids falling along their line of centers 
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S E D I M E N T A T I O N  V E L O C  I ' I 'Y 
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1.2 k ".... 
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3 4 5 6 7 8 9 I0  

R / a  

Figure 3. Sedimentation velocity versus center-to-center separtion for two spheroids as in figure 2. 
Aspect ratio of 1.01, --; aspect ratio of 2,. .  -; aspect ratio of 10, - -. 

also agree with those obtained by Gluckman et al. (1971) and Liao & Krueger (1980) as 
shown in table 2 of the appendix. Their X factor, the drag nondimensionalized by the Stokes 
drag of the sphere with the same cross-sectional area, has been successfully reproduced. 

3.3. Sedimentation o f  two horizontally oriented spheroids 
The analysis of two spheres falling perpendicular to their line of centers can be extended 

to the spheroidal case (figure 4). However, to keep the geometry invariant, the spheroid axes 
must be perpendicular to both gravity and the line of centers. 

R/o  

F d |  

Figure 4. Sedimentation of two horizontally and parallely oriented spheroids. 

Figures 5 and 6 show the sedimentation and angular velocities for the same aspect ratios 
as before. The terminal velocity of an isolated, horizontally oriented spheroid was used to 
scale both -Uz  and - % a .  In both figures the solid line is indistinguishable from the result 
for spheres (Goldman, et al. 1966). The dependence on the aspect ratio is qualitatively 
similar to that found in the previous subsection. Finally, it should be noted that for the 
geometry considered in this subsection, the O(R-5) term vanishes in [3.13] for the rotational 
velocity. 

S E D I M E N T A T I O N  V E L O C I T Y  
1.40 i I I I i 

1.35 - 

1.30 

...I I. 25 
b.I 1.20 

I. 15 - "-.. 

1.0." 

0 ~ 2  i i I l I I l 
I. 3 4 5 6 7 8 9 I 0  

R / o  

Figure 5. Sedimentation velocity versus center-to-center separation for two spheroids as in figure 4. 
Aspect  ra t io  o f  1.01, - - ;  aspect ra t io  o f  2, - - -; aspect ra t io  o f  10, - - .  
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ROTATIONAL VELOCITY 
0.18 h , , , , , , , 
0.16~ 
0.14[- \  
0.12~- \ 
°.'°r:, \ 

o.o2 I- " - - . . . . - - _ - ~ ~  
0 . 0 0 1  I I - ~  ~ ~ -..~.--..~-.--.m, 

2 3 4 5 6 7 8 9 I0 

R/a 

Figure 6. Angular  velocity versus center-to-center separation for two spheroids as in figure 4. Aspect 
ratio of  1.01, - - :  aspect ratio of  2, - - -; aspect ratio of 10, - - .  

3.4. Sedimentation of  two inclined spheroids 
The results in the preceding subsections were qualitatively similar to that found for 

spheres, and were mainly of interest as benchmarks for the computational technique. Here, 
we turn our attention to a situation where the results differ qualitatively because of the 
evolution of the particle geometry. Figure 7 shows two inclined spheroids settling with their 
axes lying in a common vertical plane. Mirror symmetry has been introduced to reduce the 
number of parameters, but the algorithm from subsection 3.1 can handle more general 
situations. At all times, the geometry is specified by the dimensionless center-to-center 
separation, R/a  and 0, the polar angle for d~. 

The successive improvement obtained with each new reflection is shown in table 1 of the 
appendix. At all but small separations, our two-reflection solution provides accurate answers. 
For spheres the exact result is available (Goldman et al. 1966) and we see that even at fairly 
small separations, the relative error is under 10% because of the small contributions from the 
neglected terms. 

The evolution of the geometry is caused by the anisotropy in the mobility tensors and the 
rotation of the spheroids about their respective minor axes. Since the mobility is greater in 
the axial than in the transverse direction, an inclined spheroid drifts horizontally as it settles. 
At the same time, the spheroid rotation changes the orientation of the axis. These two effects, 
under the quasi-steady assumption, are governed by the dimensionless equations (with R/a  
rewritten now as R) 

and 

- , , , , (R,  o) [3.15]  

- -2U~(R,O). [3.16] 

Figures 8_ and 9 show the evolution of R and 0 as determined by integrating [3.15] and 
[3.16] with a fourth orcler Runge-Kutta routine. The plots include the curve 

R - 2(1 - e: cos: 0) ~/:, 

d~ z 

= X  

R/a 

Figure 7. Mirror symmetry  geometry of two inclined spheroids with their axes in a vertical plane. 
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ORIENTATION TRAJECTORIES a / b  = I 0  

05 

o ,  

O3 

O2 

°'t O0 
2 3 4 R~s 6 ? 8 9 10 

Figure 8. Evolution of orientation and separation for two spheroids, aspect ratio - 10, falling as in 
figure 7. 

ORIENTATION TRAJECTORIES a/b = 2 

06 

04 

03 

O2 

01 

O01 2 3 4 5 6 ? 8 9 IQ R/, 

Figure 9. Evolution of orientation and separation for two spheroids, aspect ratio - 2, falling as in 
figure 7. 

for contact between the two spheroids. Figures 10 and 11 show the corresponding trajectories 
of the centroid of spheroid 2 in the x - z  plane. 

If the orientation trajectories are followed from 0 - 0 (vertically oriented spheroids) and 
all allowed values for R, the curves in figures 8 and 9 fall into two groups, depending on the 
initial value of R. If R exceeds a critical value at 0 - 0, the particles eventually and 
monotonically separate and the orientations approach asymptotically a limiting value for 0 

0 

-10 

-20 

Z -30 

-40 1 

-f~O 
I 

-60 

PARTICLE TRAJECTORIES a/b = I0 

t i ' ' ' ~ 6 ~ ; , 1 o  ol :2 3 4 X 

Figure 10. Trajectories for the centroid of spheroid 2 corresponding to the curves in figure 8 (aspect 
ratio-  10). 
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PARTICLE TRAJECTORIES a / b  = 2 
0 

- g O  

- 4 0  

Z 

- g O  

- 8 0  

i i i -,oo ; ; , ; ~ • ; , Io 
X 

Figure 11. Trajectories for the centroid of sph©roid 2 ~rre~l~nding to the curves in figure 9 (aspect 
ratio - 2). 

which is less than *r/2 because at large separations, ~ goes to zero. However, for initial values 
of R less than the critical value, the rotational motion is sufficiently large to cause the 
particles to rotate beyond the horizontal orientation. Thereafter, the particles drift towards 
each other along trajectories which are mirror images of the outward trajectories. The 
separatrix which starts at the critical values of R has the asymptote 0 ® - ~r/2 (horizontal 
orientation). 

The asymptotic behavior at large R can be obtained by using only the leading term in ~0y 
and that in Ux. Equations [3.15] and [3.16] can then be integrated analytically. It is found 
that the trajectories approach the limiting orientation 0" as 

R -I - (1 - al/a2)(cos 20 - cos 20®)/(4eat). [3.17] 

The influence of the aspect ratio is seen by comparing figure 8 with 9 for aspect ratios of 
10 and 2, respectively. For slender particles, the periodic trajectories must squeeze through a 
very narrow corridor at 0 - 0. As the aspect ratio is reduced, this corridor widens and the 
periodic trajectories become more like the straight vertical lines of the spherical case. 

The preceding analysis has shown that R(t) and 0(0 for the particle geometry of this 
subsection are either periodic or represent single encounters. Accurate calculation of the 
separatrix required the higher reflections, particularly at large aspect ratios. 
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NOTATION 

a major semi-axis of spheroid. 
b minor semi-axis of spheroid. 
c distance from center to foci. 
d unit vector denoting orientation of spheroid axis. 
e eccentricity of the spheroid. 
e rate-of-strain tensor. 
F force exerted on the particle by the fluid. 
g gravitational vector. 
I Oseen tensor. 

R center to center separation between two spheroids. 
$ stresslet or symmetric part of the stress dipole. 
T torque exerted on the particle by the fluid. 
U particle translational velocity. 
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v velocity. 
x position vector. 

Greek letters 
a constants in the Chwang-Wu singularity solutions. 
3' constants in the Chwang-Wu singularity solutions. 

identity tensor. 
alternating tensor. 

0 angle defined in figure 7. 
# viscosity. 
/~ vector denoting position on the spheroid axis. 
~r stress tensor. 

0~, 02 angles defined in figure 1. 
~b angle defined in figure 1. 
co particle angular velocity. 
fl vorticity. 
f/ vorticity tensor. 

Subscripts 
1,2 

i , j , k , l ,m  
refers to spheroids at x~, x2. 
indices used in the Einstein summation convention. 

Superscripts 
(n) denotes association with the nth reflection. 

~o ambient field. 
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A P P E N D I X  

The numerical convergence with each additional reflection is shown in the following 
tables. The geometry is as in figure 7 and the velocities have been scaled with U ®, the 
sedimentation velocity of an isolated, vertically oriented spheroid. 

Table 1. Inclined spheroids: Effect of successive reflections 

Aspect ratio - 1 and R / a  - 3.0 
U~,/U" U,,/U" ~,,a/U" 

zeroth reflection 0.00000 1.00000 0.00000 
with first reflection 0.00000 1.26852 0.08333 
with second reflection 0.00000 1.26852 0.08333 
exact solution 0.00000 1.26680 0.08178 

Aspect ratio - 2, 0 - 0 and R / a  - 1.5 

UJU" U,,/U" ~j,a/U" 
zeroth refection 0.00000 1.00000 0.00000 
with first reflection 0.00000 1.32692 0.I 2419 
with second reflection 0.00000 1.32886 0.12457 

Aspect ratio - 2, 0 - 0.3~r and Rla  - 2 

u,~IU" U,,lU" ~,,alU" 
zeroth reflection 0.06033 0.91697 0.00000 
with first reflection 0.06033 I. 18429 0.13897 
with second reflection 0.05296 I. 18259 0.14073 

Aspect ratio - 10, 0 - 0, and R/a - 0.7 
u,,,IU" u,,IU" ,o,,alU" 

zeroth refection 0.00000 1.00000 0.00000 
with first refection 0.00000 1.28195 0.07562 
with second refection 0.00000 1.28785 0.06962 

Aspect ratio - I0, 0 - 0.3f and R/a - 2 

u,,,lU" u,,IU" ~,,alU" 
zeroth reflection 0.14531 0.80000 0.00000 
with first reflection 0.14531 0.91759 0.06406 
with second refection 0.14238 0.91754 0.06416 

Table 2. Comparison with the boundary collocation solution of Gluckman et al. (1971) for 
axisymmetric uniform streaming. ~ is the spheroidal drag divided by the drag on a sphere 

with the same cross.sectional area 

Aspect ratio - 2 
R/a Method of reflections Collocation 

2 0.8485 0.8442 
4 0.9811 0.9812 
6 1.0458 1.0458 

Aspect ratio - 5 
2 1.3673 1.3700 
4 1.5675 1.5675 
6 1.6364 1.6364 


